
An Empirical Analysis of MeshShield:
a Network Security System for Fully Distributed Networks

Selina Shrestha1, Willian T. Lunardi1, and Martin Andreoni1

1Technology Innovation Institute, 9639 Masdar City, Abu Dhabi, UAE
{selina.shrestha, willian.lunardi, martin.andreoni}@tii.ae

Abstract
Distributed networks, such as wireless mesh networks, of-

fer scalability, fault tolerance, and cost-effectiveness but face
security challenges due to their decentralized nature. Tradi-
tional security approaches are inadequate, necessitating the
adoption of the Zero Trust security model. This paper in-
troduces MeshShield, a security system for wireless mesh
networks. It implements mutual authentication, continuous
authentication, a decision engine, and node quarantine in
a decentralized manner to enhance network resilience and
mitigate risks. It ensures that only authenticated and au-
thorized nodes join the network and enables periodic veri-
fication of device behavior. Security information is shared
among nodes, enabling a global view of network security.
Malicious behavior detection triggers rapid response mea-
sures, including broadcasting announcements and quaran-
tining malicious nodes. Our evaluation demonstrates that
MeshShield has minimal impacts on network performance
(3.46% drop in throughput) and fairly low average CPU, and
memory usage of 14.96%, and 1.38% respectively, making it
suitable for resource-constrained devices. Compared to ex-
isting approaches, MeshShield integrates security features in
a distributed manner, providing an integrated system to safe-
guard sensitive data in wireless mesh networks with nominal
effects on network performance.

1 Introduction
Distributed networks have gained significant attention

due to their inherent scalability, fault tolerance, and cost-
effectiveness. Wireless mesh network is an applied example
of such a network. Mesh networks consist of interconnected
nodes that communicate with each other to establish network
connectivity without relying on a centralized infrastructure.
While these networks provide significant advantages, such
as easy deployment and dynamic topology, they introduce

unique security challenges due to their decentralized nature
and wireless communication medium [1]. Traditional secu-
rity approaches, such as perimeter-based defenses, are inef-
fective in this dynamic and decentralized environment. Con-
sequently, the Zero Trust security model has emerged as a
promising paradigm to address these vulnerabilities and pro-
tect sensitive information.

The Zero Trust principle can be effectively applied to se-
cure wireless mesh networks by treating every node as un-
trusted, requiring continuous verification and validation be-
fore granting access to resources. This approach ensures that
each node in the mesh network is subject to authentication
and authorization checks, limiting the potential for unautho-
rized access and lateral movement within the network. By
implementing Zero Trust principles, wireless mesh networks
can enhance their resilience and mitigate the risks associated
with their decentralized and wireless nature.

This paper introduces MeshShield, which integrates se-
curity sensors to protect mesh networks. With mutual au-
thentication, the MeshShield ensures that only authorized
nodes can join the mesh network, reducing the risk of unau-
thorized devices compromising network integrity. Secondly,
following the Zero Trust paradigm, continuous authentica-
tion allows a periodic verification of the behavior of the de-
vices. All the nodes contain a security table with the cur-
rent security information about their neighbors, which is ex-
changed periodically to have a global view of the security in
the network. A decision engine processes all the informa-
tion from continuous authentications, adding a trust degree
for each node. Then, when malicious behavior is detected,
announcements are broadcasted, enabling rapid response to
protect the wireless mesh network. Finally, each node can
set the malicious node in quarantine, blocking its network
traffic. These benefits collectively enhance the security pos-
ture of wireless mesh networks, safeguarding sensitive data
and minimizing the potential impact of attacks. We evalu-
ated the proposed security system and showed that even on
resource-constrained devices with limited processing power
and memory, MeshShield has a low impact on the network
performance and the resource consumption of the device.

The remainder of the paper is organized as follows.
In Section 2, we describe the system architecture for
MeshShield. The proposal is evaluated, and the results are
discussed in Section 3. Section 4 lists related works. Finally,
Section 5 concludes the article.



2 Proposed System - MeshShield
Our proposed system addresses various threats that can

compromise the security of wireless mesh networks. The
system detects and mitigates three primary threat models: in-
trusion, fake/rogue nodes, and impersonation. In the case of
intrusion, MeshShield identifies nodes attempting to access
the network without valid credentials. These unauthorized
nodes are swiftly detected and prevented from compromis-
ing network integrity. Additionally, the system detects fake
or rogue nodes that possess valid credentials but lack valid
certificates. By closely examining the certificates associated
with each node, MeshShield effectively identifies and neu-
tralizes these deceptive entities. Furthermore, the system
can identify and counteract impersonation attacks, where
a node attempts to masquerade as another legitimate node
within the network. Through robust authentication mecha-
nisms and continuous monitoring, MeshShield ensures the
accurate identification of node identities, preventing mali-
cious actors from successfully impersonating other network
entities. With its comprehensive threat detection capabili-
ties, MeshShield significantly enhances the security posture
of wireless mesh networks by effectively countering intru-
sion, fake/rogue nodes, and impersonation threats.

In the proposed system, the root certificate is assumed to
be securely pre-distributed at all nodes during provisioning.
Additionally, a pair of prime field Weierstrass 256-bit Ellip-
tic Curves (also known as secp256r1P-256) keys is generated
at each node. The Elliptic Curve (EC) key pairs are gen-
erated and stored on softHSM using the pkcs11-tool. The
public key is exported from the Hardware Security Module
(HSM) to a DER certificate file. Different components of the
MeshShield system are described below.

2.1 Distributed Mutual Authentication
This component ensures that only nodes with valid cre-

dentials, i.e., a valid root certificate, can access the mesh
network. Since no central authority exists, a distributed mu-
tual authentication is performed when a node wants to join
the network. During this, nodes already in the mesh act as
servers to authenticate the newly joining nodes, which act
as clients. Each server has a wireless access point named
AuthAP ID, where ID is the node’s mesh ID. A client scans
for available access points with the pattern “AuthAP” and
connects to the one that provides the best signal quality. The
mutual authentication then takes place between the selected
server and the client. It should be noted that each node uses
two different radios: one acting as an access point to facil-
itate mutual authentication of new nodes and the other for
mesh connectivity. Details of the steps carried out during the
authentication are given below.
Step 1: Authentication Message Generation (Client Side).
The client generates the authentication message using Al-
gorithm 1, where rootcert refers to the root certificate and
myPrivKey and myID refer to the node’s own (i.e., the
client’s) private key and ID respectively. The message con-
sists of the hash digest of the client’s local root certificate
signed by the client’s private EC key using the Elliptic Curve
Digital Signature Algorithm (ECDSA), the client’s public
EC key, the client’s ID, a nonce, and timestamp of the com-

puted message. A nonce is a random number used only once
and, in combination with the timestamp ts, is used to prevent
a replay attack. Also, a Hash-based Message Authentication
Code (HMAC) of the message, computed using the root cer-
tificate as key, is appended to ensure the message integrity at
the receiver.

Algorithm 1 Authentication Message Generation
1: Compute the hash digest of the local root certificate:

digestrootcert = Hash(rootcert)
2: Sign the hash digest of the root certificate using ECDSA:

signrootcert = ECDSAsign(myPrivKey,digestrootcert )
3: Compute hmac = HMACrootcert(signrootcert ,myPubKey,myID,nonce, ts)
4: message = {signrootcert ,myPubKey,myID,hmac,nonce, ts}
5: Send message

Step 2: Verify received authentication message (Server
Side). Once the server receives the authentication message

Algorithm 2 Authentication Message Verification
1: Received message:

message = {signrootcert ,nodePubKey,nodeID,hmac,nonce, ts}
2: Compute fresh hmac using local root certificate as:

hmac′ = HMACrootcert(signrootcert ,nodePubKey,nodeID,nonce, ts)
3: if hmac′ = hmac then
4: Received message was generated by a valid node, and it was not

altered during transmission
5: Continue to the next steps
6: else
7: Invalid hmac
8: Authentication failed, close connection to the node
9: end if

10: Compute the hash digest of the local root certificate:
digest ′rootcert = Hash(rootcert)

11: Verify received ECDSA signature of root certificate using the node’s
received public key and freshly computed hash digest of the local root
certificate:

veri f ication = ECDSAveri f y(nodePubKey,digest ′rootcert ,signrootcert )
12: if veri f ication = true then
13: Received signature and root certificate are valid
14: Continue to the next steps
15: else
16: Invalid signature and root certificate
17: Authentication failed, close connection to the node
18: end if

from the client, the message is verified according to Algo-
rithm 2, where nodepubKey and nodeID refer to the other
node’s (i.e., client’s) public key and ID respectively. First,
a fresh HMAC is computed using the server’s root certifi-
cate as a key to verify the message’s integrity and that the
message was generated by a valid client (with the same root
certificate). Also, the nonce and timestamp of the message
are verified to retrieve a fresh message. Then, the received
ECDSA signature of the root certificate is verified using the
received client public key and a freshly computed hash di-
gest of the server’s root certificate. If the verification passes,
the client is deemed authentic, and the next steps for mesh
connection are carried out. Otherwise, the client is not valid,
and the connection is closed.
Step 3: Authentication Message Generation (Server
Side). Steps mentioned in Algorithm 1 are repeated at the



server, and the message generated (which includes the signed
root certificate, server’s public key, and ID) is sent to the
client for authentication at the client’s side.
Step 4: Verify received authentication message (Client
Side). Steps mentioned in Algorithm 2 are repeated at the
client to validate the server’s signature and root certificate to
authenticate the server.
Step 5: Send encrypted mesh password to the client
(Server Side). The mesh password or key required for a
node to join the network is securely shared with the au-
thenticated client according to Algorithm 3. The password
can have been pre-distributed before; otherwise, a random
number is generated on the server side. This password,
password, is encrypted with a symmetric shared secret key,
secret, derived from the server’s private and client’s public
keys using the Elliptic Curve Diffie-Hellman (ECDH) al-
gorithm. The encrypted password, encrypted password, is
sent to the client.

Algorithm 3 Mesh password encryption
1: Derive a symmetric shared key from the client and server EC keys:

secret = ECDHderive(ServerPrivKey,ClientPubKey)
2: Encrypt the mesh password using the derived symmetric key:

encrpted password = SHA256Encrypt(secret, password)
3: Send encrpted password to client

Step 6: Decrypt the mesh password and connect to the
mesh (Client Side). At the client, the symmetric shared se-
cret key is derived from the client’s private and the server’s
public keys. Then the received password is decrypted, and
the client connects to the mesh network as described in Al-
gorithm 4.

Algorithm 4 Mesh password decryption
1: Derive a symmetric shared key from the client and server EC keys:

secret = ECDHderive(ClientPrivKey,ServerPubKey)
2: Decrypt the mesh password using the derived symmetric key:

password = SHA256Decrypt(secret,encrypted password)
3: Connect to the mesh network using password as key

Step 7: Exchange mesh’s IP and MAC addresses and
add the node to Security Table (Both Side). The client
and server exchange their respective mesh IP and MAC ad-
dresses. The server stores the client’s ID, mesh IP, and mesh
MAC in its security table while the client does the same with
the server’s credentials, indicating that the nodes were mutu-
ally authenticated.
Step 8: Start access point to facilitate mutual authentica-
tion of new incomer (Client Side). Now, the client starts a
wireless access point named AuthAP myID to facilitate mu-
tual authentication of new nodes. Thus, distributed mutual
authentication ensures that the mesh password is securely
shared only with authorized nodes possessing a valid root
certificate, denying any unauthorized node from intruding
into the network.
2.2 Security Beat

Once mutual authentication is completed and the node
joins the mesh, it waits for a security beat. The security

beat (SecBeat) regularly monitors the system’s security and
is broadcasted every sec beat time. A newly joined node
waits for a security beat for one sec beat time. If a security
beat is received, it starts the security beat execution. If no
security beat is received for a whole sec beat time period,
it will broadcast a security beat message through the mesh
network and start the security beat.

The execution of a security beat consists of five main
components, as shown in Figure 1, which work together to
ensure the security of the MeshShield system beyond the ini-
tial authentication. First, three rounds of continuous authen-
tications according to a lightweight mechanism are carried
out with one-hop neighbors of a node. Then, the local secu-
rity tables updated with the continuous authentication results
at each node are exchanged with other nodes in the mesh
so that all nodes have a global view of the network’s secu-
rity status. This is then analyzed by the decision engine at
each node to determine any malicious behavior. If any node
is found to be malicious, the deciding node announces this
to all the nodes in the network via the Malicious Behavior
Announcement (MBA) broadcast message. Then, the mali-
cious node is put into quarantine, where it is blocked from
accessing the mesh network.

Security Beat

Continuous Authentication 1

Continuous Authentication 2

Continuous Authentication 3

Exchange Table

Decision Engine

Malicious Behaviour Announcement

Quarantine

Only triggered
when a malicious
node is detected

Figure 1: Components of Security Beat

2.2.1 Continuous Authentication (CA)
Through this component, each node in the mesh verifies

the identity of its one-hop neighbors to check if those are
still the initially authorized nodes during mutual authenti-
cation. This is accomplished using a lightweight Continu-
ous Authentication (CA) protocol proposed in [7] that uses
time-bound tokens generated using a shared secret, a time-
varying component, and a random value for each authentica-
tion round. This mechanism uses low-complexity hash and
Message Authentication Code (MAC) operations, making it
suitable for resource-constrained mesh devices. During veri-
fication, the time-varying tokens are valid only for a specific
time frame and linked to the shared secret at the server node.
The shared secret between any pair of nodes is derived from
their EC keys (exchanged during mutual authentication) us-
ing the ECDH mechanism. During the first security beat,
neighboring nodes that did not mutually authenticate with
each other exchange their public keys, IDs, mesh IPs, and
MAC addresses. Henceforward, a unique shared secret key
derived from the initially exchanged key pairs is used for
each pair of nodes to generate the CA token. This ensures
that any impersonation attack from a node with access to the
mesh and a fake/rogue node with invalid keys is swiftly de-
tected.



Each node (acting as a server) requests to authenticate its
one-hop neighbors (acting as clients) for every round of CA.
The nodes respond to requests to authenticate by generating
an authentication message according to Algorithm 5.

Algorithm 5 Continuous Authentication Message Genera-
tion (Client Side)
1: secret = ECDHderive(ClientPrivKey,ServerPubKey)
2: Select random number xi
3: Compute share, ui = secret + time f lagi + xi
4: Compute share authenticator, sai = Hash(xi)
5: Compute maci = HMACsecret(ClientID,ServerID,ui, time f lagi)
6: messagei = {ClientID,ServerID,ui, time f lagi,sai,maci}
7: Compute crci, cyclic redundancy check bits for messagei
8: Send messagei appended with crci

The server node then performs a series of verification
on the received authentication message according to Algo-
rithm 6 to determine the authenticity of the client nodes.

Algorithm 6 Continuous Authentication Message Verifica-
tion (Server Side)
1: secret = ECDHderive(ServerPrivKey,ClientPubKey)
2: Cyclic Redundancy Check (CRC) to check data integrity
3: Check message freshness
4: Check that the received share is fresh (not used previously during the

session)
5: Compute fresh MAC as:

mac′i = HMACsecret(ClientID,ServerID,ui, time f lagi)
and verify that mac′i = maci

6: Compute fresh share authenticator as:
sa′i = Hash(ui − secret − time f lagi)
and verify that sa′i = sai

7: if All the checks pass then
8: Authentication result = pass
9: else

10: Authentication result = fail
11: end if

During each security beat, three rounds of CA are per-
formed. For any neighbor node, if most of the three CA
results are “pass”, the final CA result, CA Result, during
that security beat is “pass”. Else, it is “fail”. CA Result and
CA Server, the verifying node’s ID (i.e., the node’s ID), are
entered in the security table. Table 1 shows an example of
the security table after CA at node N1, given that N2, N3, and
N4 are its one-hop neighbors.

Table 1: Example of security table after CA at node N1 with
neighbors N2, N3, and N4

ID MAC IP CA Result CA Server
N2 . . . 10.10.10.2 pass N1
N3 . . . 10.10.10.3 pass N1
N4 . . . 10.10.10.4 pass N1

2.2.2 Exchange Table
This component exchanges the security tables at each

node, containing the continuous authentication results of the
node’s neighborhood, with nodes throughout the mesh net-
work using Algorithm 7, so that all nodes will have a global

security table at the end. The algorithm adds columns de-
scribed in Table 2 to the security table to compute the ex-
change table. The exchange table is initially computed by
entering the node’s IP in the “Source ID” column and the
IPs of the node’s one-hop neighbors in the “To Send” col-
umn. Then, the IPs in “To Send” are appended to “Destina-
tion IP,” and the table entries are sent to the IPs in “To Send”.
Initially, a server socket is created, which puts any table en-
try received from another node into a received table queue.
Now, items in the queue are popped and concatenated to the
node’s current exchange table. This completes one round
of the table exchange. For the next exchange, “To Send” is
again computed for each table entry as the node’s one-hop
neighbors, not in “Source IP” or “Destination IP”. This en-
ables the algorithm to keep track of nodes that have received
a particular table entry so that a node only forwards it to
neighboring nodes that have not already received it. In do-
ing so, the algorithm avoids wastage of bandwidth caused
by redundant exchanges in multi-hop scenarios. Then, the
table entries with non-empty “To Send” columns are again
sent to the respective nodes, and any items in the received
queue are popped and concatenated to the current table. This
is repeated until no data is received from other nodes and no
IP is in the “To Send” column. At this point, all nodes will
have a global security table that contains local continuous au-
thentication results generated at every node in the network.
The maximum rounds of exchanges the algorithm requires is
equal to the number of hops in the mesh network.

Table 2: Additional columns in Exchange Table

Column Description
Source IP IP of the node that generated the table entry, i.e.,

the node’s own IP when it generates the exchange
table initially

Destination IP IPs of nodes where the table entry has been sent
To Send IPs of neighboring nodes where the table entry is

to be sent next computed as mesh neighbors, not
in (Source IP, Destination IP)

Table 3 shows an example of a global security table con-
structed by the end of table exchange for a mesh topology
with nodes N1, N2, N3, N4, where N1, N2, and N3 are in the
same neighborhood, and N4 is one hop away from N1 but two
hops away from N2 and N3.

Table 3: Example of global security table

ID MAC IP CA Result CA Server
N2 . . . 10.10.10.2 pass N1
N3 . . . 10.10.10.3 pass N1
N4 . . . 10.10.10.4 pass N1
N1 . . . 10.10.10.1 pass N2
N3 . . . 10.10.10.3 pass N2
N1 . . . 10.10.10.1 pass N3
N2 . . . 10.10.10.2 pass N3
N1 . . . 10.10.10.1 pass N4

2.2.3 Decision Engine
The decision engine runs at each node and analyzes the

global security table according to Algorithm 8 to determine



Algorithm 7 Exchange Security Table
1: Create a server socket that puts received messages into a “received table

queue”
2: Compute initial exchange table by adding columns: “Source IP” =

node’s self IP, “Destination IP” = “”, and “To Send” = mesh neighbor
IPs, to the node’s security table

3: while data is received from other nodes (i.e., server socket does not
timeout) or there are nodes in “To Send” do

4: Send table entries to neighbors in “To Send”:
5: Append IPs in “To Send” to “Destination IP”
6: Send respective table entries to IPs in “To Send” column
7: Clear “To Send”
8: if “received table queue” is not empty then
9: Pop the contents of the queue and concatenate them to the ex-

change table
10: Compute IPs to send for the next exchange as: mesh neighbors

not in (“Source IP”, “Destination IP”)
11: end if
12: end while
13: Drop columns “Source IP”, “Destination IP” and “To Send” and use

the resulting global table as input to the decision engine

if other nodes in the network are benign or malicious. The
global table can be perceived as a collection of votes where
every node, as a CA Server, votes for the authenticity of
its one-hop neighbors through CA results. Thus, for each
unique node ID in the table, the decision engine checks what
its various CA Servers have reported. If most CA Results
are “fail”, the node is marked as malicious. Else, the node
is marked as benign. For nodes determined as malicious by
the decision engine, malicious behavior announcements and
quarantine are triggered.

Algorithm 8 Decision Engine
1: for each unique node ID in the global table do
2: if more than half of the CA Servers have reported CA Result as

“fail” then
3: Node is malicious
4: else
5: Node is benign
6: end if
7: end for

2.2.4 Malicious Behavior Announcement
If any node’s decision engine determines a mesh node to

be malicious, malicious behavior announcements with the
node’s ID, MAC and IP are broadcasted throughout the mesh
network. This notifies nodes across the mesh of a node’s
malicious behavior.
2.2.5 Quarantine

Then, a malicious node is put into quarantine for a prede-
termined period. During this time, all network traffic to or
from the malicious node is blocked, disabling it from com-
municating over the mesh. After the quarantine, the node is
unblocked, and its authenticity is rechecked during the fol-
lowing security beat.
3 Results

Our proposal is evaluated on Raspberry-pi 4B boards,
each acting as a node in the mesh network. Each board uses
a Broadcom BCM2711 (ARM v8) 64-bit SoC 1.5GHz and

8GB of RAM. The boards run Ubuntu 20.04 and execute the
B.A.T.M.A.N IV mesh routing protocol on the top. We use
SparkLan WUBR-508N USB dongle with an rt2800 driver
supporting 802.11s mode to establish the mesh network.
3.1 Network Performance

The throughput achieved, given by iperf tests, while the
security beat of MeshShield is running (SecBeat mode) vs.
when the protocol is not running (Neutral mode) is com-
pared to assess the bandwidth consumed by the security beat.
The sec beat time is set to 2 minutes. The experiments are
evaluated for User Datagram Protocol (UDP) transmissions
throughout three security beats (i.e., 6 minutes).

In the first experiment, we evaluate the scalability of
MeshShield, analyzing the Throughput Vs. The number of
Neighboring Nodes. The throughput is measured for a vary-
ing number of nodes in a neighborhood (i.e., all nodes are
within one hop distance from each other) as continuous au-
thentications during SecBeat are performed between one-
hop neighbors. Figure 2a shows the throughput achieved
in Neutral and SecBeat modes over two to six nodes. It is
observed that the throughput in both modes remains fairly
constant as the number of nodes increases, with SecBeat re-
sulting in an average of 7 Mbps (3.46%) less throughput.
The uniform difference between the throughput achieved in
Neutral vs. Secbeat mode demonstrates that the protocol is
scalable regarding bandwidth consumption.

Next, we analyze the Throughput Vs. Number of Hops. A
mesh topology consisting of five nodes, N1, N2, . . . N5, where
each node Nn is one hop away from its adjacent nodes Nn−1
and Nn+1, is considered. Hence, the network consists of four
hops where N1 is one hop away from N2, two hops away
from N3, and similarly, four hops away from N5. Figure 2b
presents the throughput of Neutral and Secbeat modes across
varying hops, achieved by taking measurements between N1
and the rest of the nodes consecutively. The throughput for
Neutral and SecBeat modes falls as the number of hops be-
tween the nodes increases. While this behavior is expected,
it should be noted that for more than two hops, SecBeat’s
performance is comparable to the Neutral mode.
3.2 CPU and Memory Consumption

Table 4 presents the average and maximum % CPU and %
memory consumed at the server and client sides during mu-
tual authentication. It is observed that the average CPU and
memory consumption at the client and server sides are fairly
similar and low in values. While the memory consumption
caps at 2.20%, the CPU consumption reaches up to 27%.

Table 4: CPU and Memory Consumption during Mutual Au-
thentication

Server Client
Average % CPU consumption 3.39% 3.80%

Maximum % CPU consumption 26.00% 27.00%
Average % Memory consumption 1.22% 1.40%

Maximum % Memory consumption 2.20% 2.20%

Figure 2c shows the percentage of CPU and memory con-
sumed at a node during security beat for varying number
of nodes in a neighborhood. The measurements are taken



2 3 4 5 6
Number of nodes

100

120

140

160

180

200

220

240

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

) Neutral
SecBeat

(a) Throughput for Neutral vs. Secbeat mode
for a varying number of nodes in a neighbor-
hood

1 2 3 4
Number of hops between nodes

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

) Neutral
SecBeat

(b) Throughput for Neutral vs. Secbeat mode
across a varying number of hops

Number of nodes

%
 C

P
U

 / 
M

em
or

y 
C

on
su

m
pt

io
n

0%

25%

50%

75%

100%

2 3 4 5 6

Average CPU Maximum CPU Average Memory
Maximum Memory

(c) CPU and Memory consumption during Se-
curity Beat for a varying number of nodes in a
neighborhood

Figure 2: Performance evaluation of the MeshShield system. a) Network throughput while increasing the number of neighbor
nodes, b) Network throughput while increasing the number of hops, c) Resource consumption analysis.

throughout three security beats, where a sec beat time of
two minutes is considered. It is observed that the average
CPU and memory consumption remain fairly constant, in-
creasing very slightly as the number of nodes increases from
two to six. The SecBeat consumes an average of about
14.96% CPU and 1.38% memory. The maximum memory
consumed is fairly low and increases with a uniform slope of
1.1% per additional node. However, the maximum instanta-
neous CPU consumed is relatively high and increases as the
number of nodes increases, owing to the increase in the num-
ber of continuous authentications and subsequent computa-
tions. Nevertheless, the constant average CPU for varying
number of nodes indicates that the spike is short-lived.

4 Related Works
Many security mechanisms have been proposed to protect

Wireless Mesh Networks (WMN) [6]. These mechanisms
can be classified into two main categories. First, security
mechanisms at the network layer are designed to protect the
network infrastructure from unauthorized access and mali-
cious attacks. This category includes authentication [3], au-
thorization [5] access control and trust model [2]. Then, se-
curity mechanisms at the application layer are designed to
protect the data transmitted over the WMN. These mecha-
nisms include encryption [4], data integrity verification, and
intrusion detection [8]. Compared with the previous works,
the main advantage of our proposal is the combination, inte-
gration, and real implementation of all the security features
working together in a distributed manner to protect the net-
work infrastructure, making security the main aspect of exe-
cution, with minimal impact on the network performance.

5 Conclusions
We presented MeshShield, a comprehensive security sys-

tem designed to protect distributed networks, specifically
wireless mesh networks. MeshShield incorporates several
security sensors, including mutual authentication, continu-
ous authentication, and a decision engine, to enhance net-
work resilience and mitigate risks. Sharing security infor-
mation among nodes allows for a global view of network
security, facilitating the detection of malicious behavior.

MeshShield swiftly activates measures such as broadcasting
announcements and quarantining malicious nodes. Through
real experiments, we also demonstrate that MeshShield has
minimal impact on network performance and fairly low uti-
lization of resources such as CPU and memory. This makes
MeshShield well-suited for resource-constrained mesh de-
vices. In future work, we plan to add new security sensors,
such as a network intrusion detection system, and obtain data
from Physical layer to enhance the entire system’s security.
6 References
[1] M. Andreoni Lopez, M. Baddeley, W. T. Lunardi, A. Pandey, and J. Gi-

acalone. Towards secure wireless mesh networks for uav swarm con-
nectivity: Current threats, research, and opportunities. In 2021 17th
International Conference on Distributed Computing in Sensor Systems
(DCOSS), pages 319–326, Los Alamitos, CA, USA, jul 2021. IEEE
Computer Society.

[2] L. H. G. Ferraz, P. B. Velloso, and O. C. M. Duarte. An accurate and
precise malicious node exclusion mechanism for ad hoc networks. Ad
hoc networks, 19:142–155, 2014.

[3] Y. Li, W. Chen, Z. Cai, and Y. Fang. Caka: a novel certificateless-based
cross-domain authenticated key agreement protocol for wireless mesh
networks. Wireless Networks, 22:2523–2535, 2016.

[4] A. Nanda, P. Nanda, X. He, A. Jamdagni, and D. Puthal. A hybrid en-
cryption technique for secure-glor: The adaptive secure routing proto-
col for dynamic wireless mesh networks. Future Generation Computer
Systems, 109:521–530, 2020.

[5] A. Neumann, L. Navarro, and L. Cerdà-Alabern. Enabling individu-
ally entrusted routing security for open and decentralized community
networks. Ad Hoc Networks, 79:20–42, 2018.

[6] A. Sgora, D. D. Vergados, and P. Chatzimisios. A survey on security
and privacy issues in wireless mesh networks. Security and Communi-
cation Networks, 9(13):1877–1889, 2016.

[7] S. Shrestha, M. Andreoni Lopez, M. Baddeley, S. Muhaidat, and J.-
P. Giacalone. A time-bound continuous authentication protocol for
mesh networking. In 2021 4th International Conference on Advanced
Communication Technologies and Networking (CommNet), pages 1–6,
2021.

[8] R. Vijayanand, D. Devaraj, and B. Kannapiran. Intrusion detection sys-
tem for wireless mesh network using multiple support vector machine
classifiers with genetic-algorithm-based feature selection. Computers
& Security, 77:304–314, 2018.


